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§0. Introduction

Ross (7] has defined a univariate nbndecreasing process to he IFRA

(increasing failure rate average) if certain lifetimes associated with the

process are IFRA. See Bar Low and Proechan (2] for a discussion of IFRA life-

times. Extensions of IFRA to inultivariate lifetimes have been proposed by Block

and Savits [3] and Esary and Marshall [4]. In this paper the univariate concept

of Ross is extended to multidimensional processes and related to IFRA multi—

variate lifetimes.

In Section 1 a characterization of univariate IFRA processes is given. The

Ross condept of IFRA processes is extended to vector processes and an alternate

form is derived. A closure theorem and various properties are established f~r

these processes. It is shown in Theorem 2.4 of Section 2, that lifetimes

associated with these processes satisfy the condition that any monotone System

formed with these lifetimes is IPRA in the univar~.ate sense. Furthermore this

property characterizes such processes. This property, called Condition B in

Esary and Marshall [4), was one of the definitions of inultivariate IFRA

discussed by those authors. . Another type of multidimensional IFRA process is

defined. For this process, the associated lifetime satisfy the MI FRA property

of Block and Savits [31.

In Section 3, decompositions of multistate structure functions are given.

The main result, Theorem 3.10, is that a multistate structure function for a

system whose components can operate at a finite number of levels can be written as

a sum of ~ertaiti binary structure functions. Using these ideas, the behavior

of nonincreasing stochastic processes (such as those discussed in Sections 1 and

2) is analyzed. Various coherence assumptions for multistate systems proposed

by El—Neweihi, Proachan and Sethuraman [5] and Griffith [6] are analyzed in

Section 4. 

fl . ,. 
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§1. IFRA orocesses and the IFRA closure theorem,

Let X(t)  be a noanegative, nonincreasing right .continuou~ k andom process.

According to Ross (7), the process X(t) is called an IPRt proesga if and only if

the random variable

(1.1) Ta = m i  {t > 0 : x(t) <a}

is IFRA for every a > 0. Equivalently, we have the alternative characterization

below.

(1.2) Th~orem. X( t )  is an IFRA process if and only if

(1.3) E [h (X (t ) ) ]  ~ E~’~ Ih
a (X(at)) 1

for all nonnegative nondecreasing functions ii and all 0 ~ a ~ 1, t > 0.

Proof. First assume that X(t) is an IPRA process and consider h of the form

h(x) 
~ 

1(a , o) (x), a > 0. Since, by right—continuity, X(t) > a if and only if

T > t , we havea

E [h(X(t))] = P(X(t) > a) P(Ta >

~ P
1” (Ta > at) — p1/a (X(~t) 

, a) P~ ” (ha

for all 0 < a ~ 1, t ~ 0. Nov consider h of the form h(s) • 1(a ,”) (*),
a > 0 (the case a — 0 is clear). Since 

~(a.1/fl,.) 
(x) 1, h(s), the inequality

(1.3) is also valid for such h. The general result now follows by taking

nonnegative linear combinations of such functions and passing to the limit as

in Block and Savits (31.

Conversely, if (1.3) is true, then (l~1) followa by taking

h(x) 
~(a co) (~))~

-I---. . . ~~~~~~~~~~~~~~ ~~~~~~~



Roes (7 1 proved the 1PM clbsure theorem under the assumption of
independent components. We obtain the same results without the assumption of
independence. First, however, we need some definitjonp.

(1.4) Definition. An 
~pper set U C R is a subset havl~g the property that

if x c U and y~ > x , then ~ c U. If in addition U is an open subset, we call
U an upper doaain~ 

.4
Now Jet  X(t) = (X

1(t),..,, X~(t)) be a vector—valued stochastic process.
We assume that X(t) is nonnegative, nonincreasing and right—contjn~~~5

(1.5) Definition. X(t) is said to be a (vector.~value~ ) IPRA p~ocesa if and
only if for every upper domain U, the random variable

T,~~~~inf f t > 0 : X ( t ) ~~~~y }

is IPRA.

Clear1~, this inclut~es the IFRA class considered by Roes (7] in the case
n a 1. Again, as in (1,2) , we have the alternative characterizatjou given below.

(1.6) Theorem. Xtt) is a (vector—valued) IFRA process if and only if

(1.7) E [h(X( t))J < E1 ° [h a(X(at))J.

For all continuous nonnegative nondecteasing functions h and all 0 < a c 1,
t > 0.

Proof. The proof is vary similar to (1.2): first show that (1.1) is true
if h(x) — L

~
(x) for u an upper domain and thee use the argument in Block and

Savits 131 for general h.

(1.8) Rernarj.~ The restriction to continuous nonnegative nondecreasing n in
Theorem 1.6 ii just a technical convenience. As in Blotk and Savits 1 31, we
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can show that if (1.7) is valid for all continuouø h, then it is valid for all

Borel measurable nonnegative nondecreasing h.

The n.~:ct theorem de~cribea some properties of the class of IFRA processes.

We henceforth dispense with the adj ecti~ t. vector—valued .

(1.9) Theorem

(i) If X(t) in an IFRA process end 
~~~~~~ *k are continuous

nonnegative nondecreasing functions , then (*1(X ( t ) ) , . . . ,  
~k

(X(t ) ) )

is an IFRA process.

(ii) If (X
1(t), ... ,  X (t)) and (Y1(t~,..., Y~(t)) are IFRA processes

which are independent at eah time t , thet (X1(t),..., X~(t).

Y1(t) , . ..,  Ym(t)) is an 1~RA process~

(iii) If ~~~(t ), n 1,2,...~, are LFRA processes and ~~ (t) -
~ X(t)

weakly for each t , then X(t) is an IFRA process provided it is

also nonnegative, nondecreasing and right—continuous .

Proof. The proofs are clear and are left to the reader.

Let ~ be a multistate monotone structure function of n-components, i.e.,

0(x) = •(x 1,...,  x )  is continuous nonnegative and nondecteasing in each

argument.

I

(1.10) Coro1l~~~

(1.) (IFRA closure theore~). If $ is a multiatate monotone structure

function and X(t) in an I!RA process, then $(X(t)) IS an 1PM

process.

(ii) (Convolution theorem) . If (X1(t) , .. . ,  X~ (t))  and(Y 1( t ), . , . ,  ?~~(t )

are IPRA processes which are independent at each time t , then

(X1(t) + Y1
(t),..., X (t) +Y ~(t)) is an 1PM process.



(iii) If (X
1
(t),..., X (t)) is an IFRA procesc and J C {l ,..., n),

thQn (X~(t) : j J) is an IFRA process.

§2. IFRA processes and multivariate 1PM concepts.

Let T be a nonnegative random variable and X(t) its indicator process,

i.e., X(t) = I (T). Then clearly X(t) Is an IFRA process if and only If(t ,~ o)

T Is an IFRA random variable since

0 if a > l

T = m i  ft > 0 : X(t) < a) = T if 0 < a < 1.a — — —

if a < 0

Now let (T
1
,..., T) be a nonnegative random vector. If we assume that

(T1 ..., T) Is MIFRA In the sense of Block and Savits [3], then there are

many ways of constructing 1PM processes. For example, suppose that

•(t; x1,..., xn)~ 
t, x1,..., x > 0, is nonnegatIve, Borel measureable and

nondecreasing in x for fixed t , right—continuous and nonincreasing in t for

fixed x, and satisfies

+(t ; x1/a
,..,, x /a) < ~ (at~ x1,..., x~)

I
for all 0 < a < 1, t > 0 , x sIR~. Then X(t) = •(t ; T

1
1..., T) is an IFRA

process. Indeed , let h be any continuous nonnegative non.IPct~easIng function .

Then

E [ h ( X (t ) ) J  — E[h($(t; T
1
,..., T ))] < E~’~ [ha(,(t; T

1
/a,..., T / c i) ) ]

E
1
~
’0 

Ih
a
(,(a t; T1,..., T~))J E

l/a [h°(X(at))1.

—
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In particular, if x ~ x < •.. < x  is a reordering of x ,... , x ~ then1:n — 2:n — — n:n I. n

(n if O < t < x
— l n

$(t; x1,..., x )  = n—k if Xk 
< t < X~~~~~~~ , k = 1,..., n—i

1. o ~f t > x 0

has the desired properties.

(2.1) Example. Let (S,T) be MIFRA and set

(~
2 if 0 < t ~ ndn (S,T)

X(t) — 1 If n u n  (S ,T) < t < max (S,T)

0 if t>max (S,T)

Then X(t )  is an IFRA process .

(2.2) nple. Let (S,T) have the distribution with joint density

~ 3o if 3 /8<s< l/2 , 3/ 4 < t < l

f(~,t) 1 if 1/8 s 3/8, l~2 t 2/3

2 if 0 < s 1/8. 2/3 ~ t < 3/4

Then S and T are 1PM and S c T with probability ones Consequent]y,

2 if 0 < t < S
..

. . 1 ( c ) — I .  if S < t < T

0 if T < t

is an 1PM process. But (S,T) Is not MIFRA since P(S > t , T > 4t) has support

that is not an Interval and we know that if (S ,T) waS MIFRA , then am (S. T/4)

would be 1PM.

— 

~~~~ ~~~~~~~~~~~ .:.~~~~~.
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Recall that from Esary and Marshall [4], a nonnega;ive random vector

CT1,..., T~) satisfies condition (B) if and only if r (T1, . . . ,  T )  is TFRA for

every life function r corresponding to a monotone binary structure function 4.

This condition can be characterized in terms of IFRA processes as follows.

(2.3) Theorem. Let T (T1,.... Tn) be a nonnegative random vector. Then T

satisfies condition (13) If and only if the Indicator process X (t) = (X1(t),..., X~(t)).

where X~(t) = 1, (T4), is an IFRA process.

Proof. Suppose that the indicator process X(t )  is an IFRA process. If 4 is

a binary monotone structure funttion with corresponding life function r , then

P ( T  > t) = E [~ (X
1(t),..., X~(t))J

= pi/C*( > at)

and so T is 1PM.

Now suppose that T — (T1,..., T~ ) satisfies condition (B) and let U be any

upper domain in lft°. If x — (x1,..., tt~~) is any binary vector of ones and

zeros, set

1 if X E U

U 0 otherwIse

Then is a binary monotone structure function. ?urthermore, if Is its

corresponding life function and — inf{t (t) ~ U ) ,  then — But

by assumptioli, r
~ 
is 1PM and so Tu is also 1PM . Consequently, X(t )  is an

1PM process.

Theorem (2.3) extends to the general case as follows. Let X(t) be an

1PM process and let U be an upper domain In~~~. Then, according to Block and

Savits [3], there exist fundamental upper domains U~ such that ~~~ ti~ — U

~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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and T
~ f T • Since the 1PM class is closed under weak limits, it suffices to

show that T~ is IFRA for every fundamental upper domain 13. But by definition, U

is a fundaiflantal upper domain if and only If U = U~~1 
U , where

{x cit : x~ > ZIL } and zj~ 
are real numbers for I < I < n, 1 < ~ ~ 

p.

Clearly T
u 

— max T
u 

and if we set Ti~ 
= inf{t > 0 X1(t) < z~~ }, then

T = max mm T
U 1<L~p l<i(n iZji

Consequently we may state the following result.

(2.4) Theorem. X(t) is an IFRA process if and only If every finite collection

of {Tj~ 
: 1 ~ I < n, z c IR) satisfies condition (B) of Esary and Marshall.

(2.5) Corollary. tn the finite state case, i.e., X1(t) c {O,l, . . .,  M}

for all t ~ 0, 1. = 1,..., ii , X(t) Is an 1PM process if and only if

{T
1~ 1 < I < n, 0 < j < M} satisfies condition (B), where

inf{t > 0 : X
1
(t) < j}

Clearly, in t~ue finite state case, If the finite collection

1 < I < n, 0 < j < M} are MIFRA , then they satisfy condition (B). This

leads to the following definition .

(2.6) Definition. Let x(t) be a nonnegative nondecreasing right—continuous

process. Then we say that X(t) is an ?4IFRA process if and only if for every

finite collection U1 .. . ,  U of upper domains in lR’~, the random vector

(Tu . . .. , Tu ) i S MIPRA 4
1 a

As example (2.2) shows, there exist IFRA processes which are not MIFRA.

Th. analogous result to Theorem (2.4) is stated below .

-
— — —

~~~~~ 
— —S -~ ~~~ - .5 ~~~- --

— ~~~

- :- —
~~

-
~~~~~~~~~~~~~~~~~~

- 
~:-~



9

(2.7) TheOrem. X(tu is an f4IFRA process if and only If every finite collection

of {Ti5 : 1 < i < n, z c 110 is NI nA .

(2.8) Re iwrk. Note that for L FRA processes, the upper domains are defined

with respect to the state apace, whereas for MIFRA vectors, the upper domains

are defined with re~~,ect to the time space.

§3. Decompositions of multistate structure functions .

Multistate structure fumctions have been studied by Barlow f i ] ,  El—Newechi,
Proschan and Sethuraman (henceforth BPS) (5) and Griffith [6). EPS and

Griffith make a variety of coherence assumptions which we shall not make here.

Barlow uses a decomposition of the binary structure function to define a multi-

state structure function . ~n this section we obtain a general decomposition of

this type for finite multistate structure functions along with various properties

of these functions. The first two results below were proven by Griffith [6]

The notation of Barlow and Prosehan (2J and gPS [5] is used here.

Let S — (0,1,..., N) and • : St1 • S be a nonde~reasIng fth~ction. The values

taken by • viii represent the system performance and for each L, x1 will denote

the performance of the ith component. We distinguish Mfl performance levels 
F

ranging fro. perfect functioning (level N) to complete failure (level 0). The

assumption that 0 is nondecreasing corteeponds to the notion that the system

does not perform worse if its coaponents are improved.

We first consider a function • ~ -
~ S vhete S = f0,1~ ..., N] and give

conditions for • to be nondecreasing.

(3.1) Theorem. • is nondecreaai~g if and only if. -

- 

~‘ 7) ~ •(& v

if and only if

- —‘—-5- 
-5— -- —— - — a - —-  —- - . - —-  — -
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- 
0 (~~ ~) c s (x) ,~ o (i) .

(3.2) Theorem. Let 0 be nondecreasing. Then for all x — (x
1
..., x~) c Sn

(i) sin x~ c •(x) if and only if 0(k) > k all k c S.
I

(if) •(!) < aa~t x~ if and only if •(k) < k all k c S.

Consequently, sin c •(x) < max x~ if az~d only if •(k) = k for all k c S.
I I

An easy consequence of the atonotonicity assumption is stated below

(3.3) Theorel, Let 0 be nondecreasing. Then

(i) sax •((x1)1; 0) < 0(x) ~ sin •((x~)i — I
— 

(ii) 0(ain x ) < 0(x) < •(ma~ x1)
1 . _ i I

Pureheriore these bounds are not compatible in the sense that there exist

systems 0 for which ti) is a better bound than (Ii) and vice—versa.

For the ftext results besides assuming 0 Is nondecreasing, we impose the

condition that •(~) — 0 and 0(M) ~ M. 
- 
This merely states that if all components

fail, the system fails and if all components are functioning perfectly, the

system functions perfectly. We do not make the assumption Imposed by EPS and

Griffith that 0(k) — k ~or k 1,..., M—l. We will call such a function • a
multistate sonotgn~ structure function ONS).

(3.4) Definition . A vector x is called an upper (lower) vector for level k

• ofa)fr~~ if ,(x) > k(0(,c) ~k). It is called a critical upper (lower) vector

• for level k if in Cddition ~ x implies •(~) < k (if ~~~~> x iinplies 0(i) > k).

- S . - 

-~~- — -  —- . .
~~~--~~~~~— - -- -5- ‘-5 - -- ---~-- -~~~-- ~--
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The set of .11 critical upper (lomet ) victors for level k is denoted by

or Uk(O) if necessary (L.,~ or L.k(•)). If. x r Uk, k 1,2 ,. . . . ,  N , let

Vk(*) Uk(•;!.) ~ ((I,x1)- : x~ ,~ 0).

if x £ L,~, k • 0,1,..., Il-i, let -

Lk(!.) Lk($;!) — {(i,xj) S X~ t~ Ml

as we will •ee~ theeC sate play the role of sin path sets and mm cut sets

respectively. - -

As usual, the concept of duality changes upper vector concepts to lower

vector concept.. Pbre precisely, if S is an t4fS, then s~(x) ~ M—0(M—x) is also

an )*(S called the dual of 0. The proofs of the following two results are

obvious.

(3.5) Theorem. The vectOr x is an upper vector for level k of S if and only if

fl—ic is a lover vectOr for leiel P1—k of •
1)~ Purthermore, x 

~ 
uk(s) if and only

if —x c Lfl_k($~~.

(3.8) Theorem. Vo? k > 0 0(x) ‘ It if and only if x > for some ~

(i.7) 
~~~~~ 

The asat ption 0(M) • M implies U
k # 4~ for k — li..., M and

U~~~,i*pii..0O1jaM .

Nov we define the binary function for M•n binary variables

~~— (y~~~s l < i < n , l!j(n) by

(3.0) 0 (
~) — sax sin y1 , k — 1,.,., M.

4 . - . - - It LaUk (i,j)tUk(x) 
.3

Although thi, function is defined #or all. fl’n values of ~, we are only interested

is this function em eli. disain ~ivsn by the image of the following function.
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We define ~ : g0 ., (0,1)Wu by ~(~) — (a~~ (x) : 1 1. ~ n, 1 < < N ),  where

A £ S~ and ajj (!) 1 if Zj  ~. ~ and 0 otherwise.

(3.9) Lesa. For It ‘ 0 •(it) >k if end only if 
k(°(&) 1.

(3.10) Theoj~em. •(!) —

Since the proofs are straightforward, we omit thee. Theorem (3.10) is a

type of decomposition resUlt analogous to those using sin path and sin cut Bets

in the binary case .

(3.11) Remarks. U) Note that ~ . 
~~

equivalently, •i ~
. 2 ~ 

“
~~~II 

ol A • ci(S°) — (yjj) : if Yj j  m l ii then
— 1 for all I — 1k .. . ,  j—l

(ii) For a bieSry aonotene struc ture function •(x) of n binary variable s ,

if x is a sin path vector (see Oarlow *nd Pro~~han 121) then the mm path set

corresponding to x i. defined by C1(x) • (I t x1 = 1). Deskgnating the sin path

sets of + by F1, F2,..., P~, the *in path decomposition is given by

•(ic) — sax sin Xj .— 
~~~~ i€P,

The sets CUk (!), X e U,~} play a similar role here . Fur ther more , in tersa of
• 

- 
the binary monotone structure function of binary variables, •k~j~’ 

where ~ is

restricted to A , if 7~ 
is a sin pith ‘~metot, then we could associate the set

• ((i ,j) s • 1. ~~~~ • O) Uk(!) wberC a(!) — 
~~
. Thus in this sense

the Uk(x) ar. also the sin path sate of 4k (!.) • We shall call the sets

(Ic(X-)-.- - -X-

~

C

~

l

~

5) the sin p~~~ sat. oj~ $~ If P i~ a sin path sat ~~ ~‘k and

(i ,j) r F , then (i ,t) r P for y I ii j .

- 
~ _, 4 .  - . . - -

_ _ _ _ _ _ _ _  

- —~~ —-—.~~~~~ -~~~~~~.
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(iii) If •~~,... , •~ 
are binary s3notone structure functions of the binary

variables (y~ 1 < i 
~ i~, 1 < 3 c N) restricted to A and they satisfy U)- . 1  -

above, then •(!) 
~ +~ (o(z) ) is a multistate monotone structure function- k—i -

k~1 whose decomposition yields preci sely the •~,.. ., •~
•

(3.12) Example. An example viii serve to illustrate the procedure. Let

$ : (0 ,1,2) 2 4 (0 ,1,2) with 0 •+ ( 0 ,O) “ - O ( l-~0), 1 $(O ,1) •~~ (0 ,2) ~~4) (1 ,~ )
— o ( 1~l), 2 “~~ (2,O) — 4 ( 2 ,1) — 4 ( 2 ,2). Then -

- U1 — ( ( 2 ,0), (0,1)) , U2 — { (2 ,0)) -

and

U1(2,0) — ( ( 1 ,2)) — U2(2,0),

• 111(0,1) — (2 ,l~

Then - - 
-

• sax sin • -sin Yj
~~U2 (i ,fl di2 (x) ~ (i,j)e112(2,0) ~

and

sin y - sax (~i21, y )
!t11

1 
(i,j)cU1

(x) ~ t 12

where we have 
-

- -
~ ~~~~~

_ - - - — - --
~~
-

~ - 
- --u-- —
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2
oCx) + (u~A~ •~

(
~ &) •(x) — 

~I 
__________ k—i

• (0 ,0) (0,0,0,0) 0 0 0

(0,1) (0,0,1,0) 1 0 - I
- 

-

. 
(0,2) (0,0,1,1) 1 0 i

‘1,0) (1,0,0,0) 0 0 0

(1,1) (1,0,1,0) 1 0 1

(1,2) (1,1,0,0) 1 1 2

(2,0) (1,1,0,0) 1 1 2

(2,2) (1,1,1,1) 1 1 2

Notice , f or exaaple, that to the critic~1 upper vector of level l~ (2,0)

correspondC th. set U
1

(2,0) • ((1, 2) ) .  Also notice that o(2,0) — (1,1,0,0)

is a sin path vactot tot in the sense that •i(l,l.O,0) — 1 but

•i(1,0,0,0) — 0 ((0 ,1,0,0) ~~A so we don’t consider it). The corresponding

sin path set is C1(1,1,0,0) — ((1,2)) which is U1(2,0).

A similar decomposition can be obtained Using critical lover VectorS.

More precisely, define the binary structure function of the N~n binary

variable x (s~~ : 1 ~~i c e , 0 <~~~ ~~M—1) by

— ~ax
xcL~t 

(i ,PcL~(x) ~

for k 0,1,..., P1—i. As in th. previous case we restrict the domain of

to the image of B g11 • (0,1)111411 
~,here B C!.) (ø

~j (!) : 1 ~ i ~ n,

0 c ~ fl—i) and $~j (z) — 0 ~f c ~ and 1 otherwise . 

-w---—- - --5- --- - - — - -5 -
- ;~~~~~—~~~~~~~~~~
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(3.13) The~rma. •® — 
~ k (B®)k—0

Proof. The proof is ‘ost easily obtained b~ duality arguments.

We nov consider the stochastic behavior. Let X1(t) be a right—continuous

nonincreasing stochastic process with valueS in g; i.e., X~(t) tepr~seht~ the

statistical behavior of componen t i. Set X(t) (X1(t ) , .. ., X~(t)) . We define

~~ inf(t~~~0 1 X~(t) < J }  
-

- Tk
a inf(t L O : •(X(t)) < k )

for i • 1,..., n and 3, k — 0,1, . . . ,  W’1.

(3.14) Theorem . For k — 0,1,..., P1—1,

T - max *Ln T
- - - k . xcU&.,.i (i,

~
3)eUk.,.i(x) 

i, —1

- sin - .. . sa x -  T
~.tL k 

(i.1)cL
k

(x) ~~

Proof. First we observe that •(X(t)) c k if and only if 4~~ 1(a(X( t ) ) )  — 0.

Consequently , Tk ~~~~~ where — inf (t > 0 •k+t(a(~
(t))) a o}~ But

fro. the results in the binary caSe,

k+i
• - - r . . ~~max - sin - T

j~~~~

- . 
A~11f r .~ (i

~jhUk+l (x)

where — Let Ct ~~O ~~ajj (!~(t)) • 0). Since

—

- 

L
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— > 0 ci~1
(X(t )) — 0) — inf(t ~ 0 $ Xj(t~ < ii

— inf(t ~ 0 : X~(t) ~ j—l) ~

we are done. The second half follows similarly .

14. Some remarks about coherence assumptions,

As was m .aarked earlier, FF5 (5) and Criffith t~i alan stndied the

deterministic properties of multistate monotone structure functions in the

finite state case. lesides the basic monotonicity a.au~~tiom, however, they

assumed that •(k) — k for all k e S plus a type of coherence assumption. In

[63, Griffith delineated three distinct cohereflee conditi na , which we list

below.

(SC) : - • is said to be 
~~~~~~~ 

coh.rsut if for any componen t i and any

level 1. there exists x such that •(Jj t ~) — 3 while •(L~ : x) ~1

tor t # J .

(C) : • L. said to be coherent if for any component i and any level

j > 1, there exists * such that •((i~t)~ $ ) ~ 4l(j~ x).

(WC) : • is said to be ~~~~~ coherent if for any component I, there exitta

x such that •(0~ !) •~ •(11~ : x).

EPS (31 assumed condition (SC) for their class vhsr~aa Griffith 161 showed

that all of the results of (31 hold under th. assumption of (C), but SóSe are
false under (WC). Loosely .p.akisg, condition (SC) says that ever5 1e~ei of

evsr~ component is relevan t to the ~~~s level of the syStem O$ tondition (C)

£ 1 $  tha t every level of sveiy component is relevant to the system 0; condition

(1~) says that every component is relevant to the system 0.

5 -—- —~~~~~~ - —5 - —— —  — -

- i:- — - - — • -

~~~~~~~~~~~
-
~~~~~~~~~

-
~~~~~~~

---- - -
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In terms of the decomposition (3.10) , we can paraphra se the above a.

follows. Let R — U
~~~~~~, ~~~~~ 

Uk(i) . Then • is coherent if and only if for

every i and j, Yj~ is relevant to some k ’ 6 is weakly Coheten t if end Only

if for every i, there exists j such that (i,j) . R; i.e., for every i, there

exists .3 such that yJ~~ 
is relevant to some k The condition of strong coherence

and the conditions •® > k , •(k) < k for k c S can be similarly rephrased, but

since they are somewhat more complicated to ~ta t*, and lose their intuitive

content , we will not state them- here.

(4.1) Theorem. Let 0 be a multistate monotonic struCture function on

S — (0,1,..., Ml. Then

Ci) •(x~~i~~ — 6(x) v 0(i) for all x, 
~ 

€ S~ if and only if

— sax hj(x~) where b~(i) 0(j~; Q).

(ii) OCx A~~) — 6(x) A •® for all x, y c  S~ if and only if

— sin Hj(xi) where H~(J) a •(i~; N).
i

The proof. are very simple and so are omitted, Thus in case (i), •

must be a parallel system

r 
h
1

(x
1)

~~~~~~~~~ 
h2(x2)

L h ) .J
f l u

while in case (ii) ,- • must 
- 

be a series system
- 

. 

~~~~~~~~~~~~~~~~~~~~~~~~~~ •

p -~~~~~~~~~
-- -  - —-5 —  - - — --5- — —  —~~~- a—- - 

—_____________________
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In EPS [5), under the assumption of (SC), it was concluded that h~(J) — j  and

— j  for all I — 1,..., n, j — 0,..., M. Griffith (61 concluded the ease

result assuming the weaker condition (C). Griffith also shoved that the result

was false under (WC).

I

- - — — - 5-- - — -- -5
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